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Abstract

Project 1: Broadband Quantum Noise Reduction in Future Long Baseline
Gravitational-wave Detectors via EPR Entanglement

Broadband quantum noise reduction can be achieved in gravitational wave detectors by in-
jecting frequency dependent squeezed light into the the dark port of the interferometer. This
frequency dependent squeezed light can be generated using external filter cavities, however
in long baseline interferometers (LBIs), the filter cavity required to achieve the broadband
squeezing has a low bandwidth – necessitating a very long cavity. It has been shown re-
cently that by injecting EPR entangled beams generated in an optical parametric amplifier
(OPA), the interferometer can simultaneously act as a detector and a filter cavity. This is
an attractive broadband squeezing scheme for LBIs because the length requirement for the
filter cavity is naturally satisfied by the length of the interferometer arms. In this project we
present a systematic way of finding the working points for this broadband squeezing scheme
in LBIs. We also show that in LBIs, the EPR scheme achieves nearly perfect ellipse rotation
as compared to 4km interferometers which have appreciable error around the intermediate
frequency. Finally, we show that an approximation for the opto-mechanical coupling con-
stant in the 4km case breaks down for longer baselines. These results are applicable to
planned detectors such as the 10km Einstein Telescope and the 40km Cosmic Explorer.

Note: A condensed version of project one has been published in Physical Review D [1]. The
abstract used here is identical to the one submitted to PRD. I certify that every word

written herein is my own, while acknowledging that Haixing Miao offered crucial input to
the PRD draft which I, in turn, used to update the final draft of this thesis.



Abstract

Project 2: The Quantum Limits of Beam Displacement Measurements

Accurately measuring the position of a laser beam is of interest for many sensing applications
including atomic force microscopy (AFM) readout. In this project, we rigorously analyze the
performance of different detectors designed to measure small displacements of laser beams.
We consider the performance of a linear interferometer, a single split detector, and a position
sensitive detector (PSD) for coherent, as well as squeezed states of light. To the best of our
knowledge, this is the first time a position sensitive detector has been treated in a rigorous
quantum mechanical fashion. Our key result is the fact that a PSD should outperform a
split detector when using a TEM00 beam. The methods used here are general and can be
extended to other detector set-ups assuming a physical model of the detector is known.
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Chapter 1

Project 1: Broadband Quantum
Noise Reduction in Future Long
Baseline Gravitational-wave
Detectors via EPR
Entanglement

1.1 Introduction and Motivation

Gravitational-wave (GW) detectors including LIGO and VIRGO, which recently made
breakthrough discoveries, are Michelson-type interferometers with km size arms [2–4]. They
are among the largest and most sensitive instruments humans have ever constructed. How-
ever, to push the limits of scientific discovery even further, larger, more sensitive experiments
are already being planned. Two such detectors are the 10km Einstein Telescope (ET) [5]
and the 40km Cosmic Explorer [6, 7]. They differ from LIGO in many ways including scale
and configuration, but for our purposes can be treated in a very similar way mathematically.

All ground-based GW detectors are plagued by various noise sources that result
from the fact that they are on Earth (e.g. seismic activity). Once these and all other
classical noise sources are suppressed, the sensitivity of GW detectors is ultimately lim-
ited by the quantum nature of light. The quantized electromagnetic field is analogous to a
quantum harmonic oscillator (position and momentum of a mass are replaced by amplitude
and phase quadrature of light). The uncertainty in the amplitude and phase quadrtaures
(quantum fluctuations) limits the sensitivity of interferometric measurements. One may
assume that because an interferometer measures phase, we must always want lower phase
noise; thus, a phase-squeezed vacuum injection would be preferable. This would be true if
radiation pressure was non-existent. Because amplitude and phase are conjugate variables
(like position and momentum) the Heisenberg Uncertainty Principle states that the product
of their uncertainties must be greater than some constant. Thus, by decreasing phase fluc-
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tuations, we suffer an increase in amplitude fluctuations. This would not be a problem if at
low gravitational wave frequencies, the mirror suspension systems did not have mechanical
resonances that amplify these fluctuations and make radiation pressure noise the limiting
noise source [8]. Put simply, at low frequencies we need amplitude-squeezed vacuum in-
jection. Once far away from these resonances (at higher frequencies), the detector is then
limited by shot noise and thus phase-squeezed vacuum is needed. It has been known for
some time that frequency-dependent squeezing would allow one to surpass the SQL over
all frequencies [9]. These proposals require additional low loss filter cavities. It was shown
recently; however, that this frequency-dependent squeezing can be achieved, without addi-
tional cavities, using EPR-entangled signal and idler beams (different frequency components
in conventional squeezed light source) [10]. In this project, we present a systematic way of
finding the working points for this broadband squeezing scheme in LBIs. We also show that
in LBIs, the Einstein-Podolsky-Rosen (EPR) scheme achieves nearly perfect ellipse rotation
as compared to 4km interferometers which have appreciable error. Finally, we show that an
approximation for the opto-mechanical coupling constant in the 4km case can break down
for longer baselines. First, though, we develop crucial quantum optics theory that will be
relevant throughout this entire thesis.

1.2 Background

In order to understand the mathematics that forms the core of this project, we must first
understand some content from a typical course in quantum optics. For more detail, please
consult one of the standard textbooks on the subject [11–13]. If a derivation is rather
specialized, I will include it in the appendix.

1.2.1 State Representation in Optical Phase Space

Quantum optics really starts with the quantization of the electromagnetic field. Refer to
any textbook on quantum optics for the standard quantization of the electromagnetic field.
As with the quantization of any linear theory, quantization is as simple as adding hats to
the dynamical variables to make them operators in a Hilbert space. At first, this may sound
like a meaningless string of words; however, as one goes through the quantization many
times, it becomes clear how similar the form of the equations for the quantized field is to
the classical counterpart. Decades after the first quantization of the EM field by Dirac [14],
the topic is still of interest. I refer the reader to a very nice article published in 2014 on
the quantization of the EM field from a physical, rather than purely mathematical point of
view [15].

Once the field is quantized, we have to choose a basis in which to represent our
states. A common choice is the number, or Fock, basis. In this basis, the basis vectors are of
the form |n〉 where n is an integer. Thus, |0〉 represents the ground, or vacuum, state of the
field. This can be thought of as the lowest energy oscillation in the field. For our purposes,
we really only need to discuss the vacuum and squeezed vacuum states, because our focus
is on the state that enters the unused port of the interferometer. As such, we mention here
some key aspects of these states and their representation in optical phase space.

There is a one-to-one mapping between every density operator on a Hilbert space,
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which we will denote ρ, and a mathematical function in optical phase called the Wigner
function (named after the Hungarian-American theoretical physicist Eugene Wigner). The
Wigner function is a quasi-probability distribution. Generally, distributions of this kind relax
some of the axioms of probability theory. The Wigner function falls into this class of objects
because it can take on negative values (unlike true probability distributions) and because it
does not form a true joint distribution – we cannot jointly measure the two input variables
because they are conjugate variables in quantum mechanics). If the state is pure (that is,
if tr(ρ2) = 1) then the density matrix has the form ρ = |ψ〉 〈ψ| and the Wigner function is
given as:

W (X,Y ) ≡
∫ ∞
∞

dX ′ 〈X +X ′|ψ〉 〈ψ|X −X ′〉 e−2iX′Y (1.1)

Where generally, X and Y are any two conjugate observables. In our context, X̂ will
represent the amplitude quadrature of the quantized electromagnetic field and Ŷ the phase
quadrature (the hats are commonly dropped when it is clear from context what the letters
represent). The quadratures are given as

X̂ =
â+ â†√

2
(1.2)

Ŷ =
â− â†

i
√

2
(1.3)

where we have absorbed some factors into the definition of the creation and annihilation
operators to simplify our calculations. These are directly analogous to the position and
momentum operators of the quantum harmonic oscillator, respectively. The unfamiliar
reader should at this time refer to one of the aforementioned standard quantum optics texts
for more information.

Note that the mapping is easily generalizable to mixed states which are of the form
ρ =

∑
i pi |ψi〉 〈ψi| (with pi ≥ 0 and

∑
i pi = 1). In this case, the Wigner function becomes

W (X,Y ) =
∑
i

piWi(X,Y ) (1.4)

where each Wi(X,Y ) is due to the state |ψi〉 〈ψi| alone and is calculated using Eq. (1.1).
Let us consider an important example: the Wigner function for the vacuum state ρ = |0〉 〈0|.
Recall from basic quantum mechanics that

〈X +X ′|0〉 =

(
1

π

)1/4

e−
(X+X′)2

2 and 〈0|X −X ′〉 =

(
1

π

)1/4

e−
(X−X′)2

2 (1.5)

From these, we can derive the Wigner function for the vacuum state, W0(X,Y )

W0(X,Y ) =
1

π
e−X

2−Y 2

(1.6)

This represents a two-dimensional distribution shown in Fig. 1.1. We typically take a
cross-section of the Wigner function to visualize the state in a 2D phase space.
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Figure 1.1: This figure shows the origin of the optical phase space representation for states. The
rightmost plot shows an equiprobability contour of W0(X,Y ).

We now turn to the second state we will be considering: the squeezed vacuum state.
The Wigner function for the squeezed vacuum state is derived by conjugating the single-
mode squeezing operator around the amplitude (X̂) and phase (Ŷ ) operators, respectively.
The single-mode squeezing operator is defined as [11] as

S(ξ) = e
1
2 (ξ∗â2−ξ(â†)2) where ξ = re2iθ (1.7)

We call θ the squeezing angle and r is the squeezing parameter. It can be shown (see
aforementioned standard quantum optics text) that

Ŝ†âŜ = â cosh r − e2iθâ† sinh r (1.8)

Thus, if we focus on amplitude squeezing (θ = 0) we see from the definition of the amplitude
quadrature and Eq. (1.7) that

Ŝ†X̂Ŝ =
1√
2

(
Ŝ†âŜ + Ŝ†â†Ŝ

)
(1.9)

=
1√
2

(
â cosh r − â† sinh r + â† cosh r − â sinh r

)
(1.10)

= X̂(cosh r − sinh r) (1.11)

Ŝ†X̂Ŝ = e−rX̂ (1.12)

One can repeat the same calculation using the definition of the phase quadrature. The result
is:

X̂ → e−rX̂ (1.13)

Ŷ → erŶ (1.14)

For a phase squeezed state (θ = π/2), the signs on the above exponentials would just flip.
This yields a Wigner function of

W (X,Y ) =
1

π
e−(e−rX)2−(erY )2 (1.15)

The takeaway is that the single-mode squeezing operator serves to squish our Wigner func-
tion in one direction specified by a so-called squeezing angle. As such, the equiprobability
contour is transformed from a circle to an ellipse.
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Figure 1.2: Visual representation of the action of the single-mode amplitude squeezing operator.

In order to appreciate the theory implemented in the first project, it is crucial
to understand ellipse rotation. When we say ellipse rotation, we are referring to the time
evolution of the equiprobability contour of the Wigner function of the squeezed vacuum
state in optical phase space. We can see this rotation by solving for the time evolution of
the amplitude and phase quadratures, and then calculating the time evolution of the uncer-
tainties in these quadratures (Note: this example is adopted from Haixing Miao’s course on
quantum optics at University of Birmingham in Spring Term 2019).

The evolution is governed by the free Hamiltonian

Ĥ = ~ω(â†â+
1

2
) (1.16)

There are multiple ways to derive this, but we take the following approach. We first solve
the Heisenberg equation of motion for the creation and annihilation operators.

˙̂a(t) =
1

i~
[â(t), Ĥ] (1.17)

= −iω[â(t), â†(t)]â(t) (1.18)

˙̂a(t) = −iωâ(t) (1.19)

From this we get

â(t) = â(0)e−iωt (1.20)

â†(t) = â†(0)eiωt (1.21)

Plugging back into the definition of the quadratures, we get

X̂(t) =
1√
2

(â+ â†) (1.22)

=
1

2
((X̂(0) + iŶ (0))e−iωt + (X̂(0)− iŶ (0))eiωt) (1.23)

=
1

2
(X̂(0)(e−iωt + eiωt) + iŶ (0)(e−iωt − eiωt)) (1.24)

X̂(t) = X̂(0) cosωt+ Ŷ (0) sinωt (1.25)
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Following the same procedure for the phase quadrature yields

Ŷ (t) = Ŷ (0) cosωt− X̂(0) sinωt (1.26)

Before proceeding, we must introduce the definition of the variance of a quantum operator.
The variance of an operator Â is defined as

VÂÂ = 〈ψ|Â2|ψ〉 − 〈ψ|Â|ψ〉
2

(1.27)

We further define the covariance of Â and B̂ as

VÂB̂ =
1

2
〈ψ| ÂB̂ + B̂Â |ψ〉 (1.28)

Now, we apply these formulas to the amplitude and phase quadratures to see what we mean
when we say ellipse rotation. Consider an initial state that is amplitude squeezed. In the
case of the squeezed vacuum,

VX̂X̂ = 〈ψ| X̂2 |ψ〉 (1.29)

VŶ Ŷ = 〈ψ| Ŷ 2 |ψ〉 (1.30)

VX̂Ŷ =
1

2
〈ψ| X̂Ŷ + Ŷ X̂ |ψ〉 (1.31)

This is true because 〈ψ| X̂ |ψ〉 = 〈ψ| Ŷ |ψ〉 = 0 for a squeezed vacuum. Using these, we get
VX̂X̂ = 1/4, VŶ Ŷ = 1, and VX̂Y = 0 at t = 0. So, using the equations for the time-dependent
quadratures, we can calculate the variances and covariance at time t.

VX̂X̂ = 〈ψ| X̂2 |ψ〉 (1.32)

= 〈ψ| (X̂(0) cosωt+ Ŷ (0) sinωt)2 |ψ〉 (1.33)

= VX̂X̂(0) cos2 ωt+ 2VX̂Ŷ (0) cosωt sinωt+ VŶ Ŷ (0) sin2 ωt (1.34)

VX̂X̂ =
1

4
cos2 ωt+ sin2 ωt (1.35)

Following the same procedure, we find

VŶ Ŷ =
1

4
sin2 ωt+ cos2 ωt (1.36)

VX̂Ŷ =
3

4
cosωt sinωt (1.37)

Now, we can check these expressions at a few points.

t = 0 t = π
4ω t = π

2ω t = 3π
4ω

VX̂X̂ 1/4 5/8 1 5/8

VŶ Ŷ 1 5/8 1/4 5/8

VX̂Ŷ 0 3/8 0 -3/8
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Figure 1.3: This figure, adapted from Haixing Miao’s quantum optics course material, illustrates
the free evolution of the squeezed state which we will call “ellipse rotation” from now on.

The takeaway is that a squeezed state will evolve freely with time. Thus, the
quadrature that is squeezed will change with time. In our frequency-dependent squeezing
scheme, we are essentially using the interferometer to achieve different free evolution at
each individual frequency. In short, waves of different frequencies “see” a cavity with a
different length. That is, they pick up a different phase depending on their frequency. This
difference in free evolution allows us to use the interferometer itself as a filter cavity that
yields squeezing in the desired quadrature over a range of frequencies. The relevant range
of frequencies is set naturally by the length scale of the interferometer and was chosen due
to the astrophysical theory at the time of inception of the detectors. More on this later.
Now, we turn to the idea of a two-mode squeezed state, entanglement, and how to verify it
mathematically.

1.2.2 Two-mode Squeezed State and Entanglement

Our broadband quantum noise reduction scheme takes advantage of entangled signal and
idler beams generated in a nonlinear amplifier (NLA). These entangled beams can be de-
scribed as a two mode squeezed state. Perhaps the simplest generation of a two mode
squeezed state occurs by interfering an amplitude squeezed vacuum and a phase squeezed
vacuum on a 50:50 beam splitter. As it turns out, this system serves as a great analogy
to the description of the NLA. By comparing the covariance matrices for the input and
output modes, we can see the signature of entanglement. For a detailed derivation of the
input-output relation for the NLA in the Heisenberg picture, see Appendix A.1. We start
with two fields interfering on a balanced beam splitter as shown in Fig. 1.4. It suffices
to represent each field using an annihilation operator which we represent using a lowercase
letter (â, b̂, etc.). These operators arise in the quantization of the electromagnetic field just
as the raising and lowering operators for the quantum harmonic oscillator do. It is usually
easier to work with just the creation and annihilation operators rather than the electric field
operator but the results will be the same. Recall from introductory quantum mechanics that
the creation operator “creates” a quantum of energy in our field. Another way of saying
this is that the operators create a new particle in a given state. That is, they act on the
number basis in the following way:

â |n〉 =
√
n |n− 1〉 (1.38)

â† |n〉 =
√
n+ 1 |n+ 1〉 (1.39)
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Figure 1.4: Amplitude squeezed vacuum, mode ĉ, and phase squeezed vacuum, mode d̂, interfered
on a 50:50 beam splitter.

In our case, the creation operator creates a photon in a given state and the annihilation
operator removes one. The expected number of photons in a field is defined as

〈N̂〉 = 〈n|â†â|n〉 = n (1.40)

Every mode of the quantized electromagnetic field is a quantum mechanical degree of free-
dom. We should note that classically, a mode is simply a vector field which is a normalized
solution to Maxwell’s equations in a vacuum [16]. The electric field operator in quantum
mechanics is very similar to the classical description except that the complex field ampli-
tudes are replaced with creation/annihilation operators. As such, our creation/annihilation
operators are defined for a specific mode and the mode defines the shape in time and space of
the probability of detecting a photon. For a detailed review article on the modes and states
in quantum optics, see Ref. [16]. For our purposes, when you see an annihilation operator,
you can think of this as one mode of a photon field. We will thus carry the manipulations
out on the quantum operators themselves.

So, we start with two fields that we represent with the annihilation operators ĉ and
d̂, where the mode corresponding to ĉ is in an amplitude-squeezed vacuum state, and the
mode corresponding to d̂ is in a phase-squeezed vacuum state. The fields after a balanced
beam splitter are given as â

b̂

 =
1√
2

1 1

1 −1

ĉ
d̂

 (1.41)

We are interested in the covariance between the amplitude and phase quadratures of these
fields before and after the beam splitter. Let us define the amplitude and phase quadratures
for the field represented by the annihilation operator â as

â1 =
â+ â†√

2
(1.42)

â2 =
â− â†

i
√

2
(1.43)
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It might make more sense to use X̂a, Ŷa to represent these quadratures; however, we are
adopting the notational standard set in the fundamental paper on the subject [9]. Now, the
input covariance matrix is defined as

Vin = 〈ψ|


ĉ1

ĉ2

d̂1

d̂2


[
ĉ1 ĉ2 d̂1 d̂2

]
|ψ〉 (1.44)

Vin = 〈ψ|


ĉ1ĉ1 ĉ1ĉ2 . . .

...
. . .

d̂2ĉ1 d̂2d̂2

 |ψ〉 (1.45)

An outline of how to calculate an entry of this matrix is given here, but a computer software
should be used to calculate the full matrix. Calculating just one entry by hand gives a
thorough appreciation of modern computers. In order to evaluate the expectation values,
the form of the state needs to be known. In our set-up, the states are squeezed vacuum
states which can be written as

|ξ〉 = Ŝ |0〉 = e(ξ∗â2−ξ(â†)2)/2 |0〉 (1.46)

where ξ = re2iθ comes from the definition of the squeezing operator from Eq. (1.7) . We
then use the fact that Ŝ†Ŝ = Î and

Ŝ†âŜ = â cosh r − e2iθâ† sinh r (1.47)

where θ = 0 indicates a amplitude squeezed vacuum and θ = π/2 is phase squeezed.

〈ψ| ĉ1ĉ1 |ψ〉 = 〈ψ| 1√
2

(ĉ+ ĉ†)
1√
2

(ĉ+ ĉ†) |ψ〉

=
1

2

(
〈0| Ŝ†ĉĉŜ |0〉+ 〈0| Ŝ†ĉĉ†Ŝ |0〉+ 〈0| Ŝ†ĉ†ĉŜ |0〉+ 〈0| Ŝ†ĉ†ĉ†Ŝ |0〉

)
=

1

2

(
〈0| Ŝ†ĉŜŜ†ĉŜ |0〉+ 〈0| Ŝ†ĉŜŜ†ĉ†Ŝ |0〉+ . . .

)
=

1

2

(
〈0| (ĉ cosh (r)− ĉ†e2iθ sinh (r))(ĉ cosh (r)− ĉ†e2iθ sinh (r)) |0〉+ . . .

)
...

trig identities

...

〈ψ| ĉ1ĉ1 |ψ〉 =
1

2
e−2r

(1.48)
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The full input covariance matrix is given as

Vin =
1

2


e−2r 0 0 0

0 e+2r 0 0

0 0 e+2r 0

0 0 0 e−2r

 (1.49)

The fact that this is a diagonal matrix implies the quadratures are independent
variables before interacting on the beam splitter. That is, the covariance between quadra-
tures is zero, which is why all of the off-diagonal terms are zero. After the beam splitter,
we can use the input-output relation given in Eq. (1.41) to see that covariance matrix after
the beam splitter is

Vout =
1

2


cosh (2r) 0 − sinh (2r) 0

0 cosh (2r) 0 sinh (2r)

− sinh (2r) 0 cosh (2r) 0

0 sinh (2r) 0 cosh (2r)

 (1.50)

I claim that this matrix indicates we have entanglement between quadratures. How can we
see this? There is a simple way to mathematically verify entanglement when dealing with
a bipartite state which has a Gaussian Wigner function. First, break the matrix into 2× 2
blocks:

Vout =

 Va Vab

Vab Va

 (1.51)

For example, Va represents the covariance matrix for the quadratures of the field represented
by the annihilation operator â. By comparison with Eq. (1.50) we see that

Va = 〈ψ|

â1

â2

[â1 â2

]
|ψ〉 =

1

2

cosh (2r) 0

0 cosh (2r)

 (1.52)

The determinant of a variance/covariance matrix is a generalized notion of variance.
Thus, the total variance of the bipartite state outputted by the beam splitter is given by
|Vout|. In our case, we find

|Vout| =
1

16
(1.53)

which in our phase space normalization is a minimum uncertainty state (it saturates the
relevant form of Heisenberg’s uncertainty principle). However, if we calculate the same value
for the input covariance matrix we also find that

|Vin| =
1

16
(1.54)
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Thus, both states are minimum uncertainty states. The key is to then calculate the gener-
alized variance of the subsystems individually. In the case of the input matrix, this is the
upper-left and lower-right blocks. We have:

|Vc| =

∣∣∣∣∣∣
 e−2r

2 0

0 e2r

2

∣∣∣∣∣∣ =
1

4
(1.55)

|Vd| =

∣∣∣∣∣∣
 e2r2 0

0 e−2r

2

∣∣∣∣∣∣ =
1

4
(1.56)

Thus, we see for the input bipartite state we have that the total uncertainty is equal to the
product of the two uncertainties of the subsystems. However, for the output state, note that
although |Vout| = 1

16 , we have

|Va| =
1

4
cosh2 (2r) (1.57)

|Vb| =
1

4
cosh2 (2r) (1.58)

Note that 1
4 cosh2 (2r) ≥ 1

4 with equality if and only if r = 0 (no squeezing). Thus, we
have a total uncertainty of 1

16 but the individual systems each have uncertainty greater
than 1

4 (so we expect their product to be larger than 1/16). The correlation between the
systems reduces the total uncertainty. This is a signature of entanglement in bipartite
Gaussian quantum states. Also note that the higher the squeezing parameter, r, the larger
the correlation (higher the entanglement). In the limit where r →∞, the ideal EPR case is
realized. For more on this, see Ref. [17]. It is because of this entanglement that we are able
to reduce the uncertainty in a given quadrature of the â field by making a measurement on a
specific quadrature of the b̂ field or vice-versa. We will now turn to the task of determining
the optimal quadratures to measure in order to achieve broadband squeezing.

1.2.3 Conditional Squeezing: Reduction of Uncertainty

The concept of so-called conditional squeezing follows directly from the previous section. In
short, we have an entangled wavefunction describing the signal and idler beams. In the limit
of infinite squeezing, we have perfect quantum correlations between certain quadratures in
the beams. Thus, if we measure the right quadrature in the idler beam, we will immedi-
ately collapse the wavefunction and reduce our ignorance about the signal beam due to the
correlations. The higher the correlations (stronger the entanglement) the higher the noise
reduction. In order to reduce the noise where we want to (i.e. conditionally) we need to
determine which quadratures are correlated between the signal and idler. We can deduce
this by calculating the conditional variance from first principles.

Assume the signal and idler beam are perfectly detected by a homodyne detector
with strong local oscillator. Let HDa represent the signal homodyne detector which measures
âθ = â1 cos θ + â2 sin θ. Similarly for the idler, HDb measures b̂φ = b̂1 cosφ+ b̂2 sinφ where
â1 and â2 are the amplitude and phase quadratures defined above. Construct the following
estimator of âθ using the measurement outcome of b̂φ:

âestθ ≡ gb̂φ (1.59)

13



where g ∈ [0, 1]. The conditional variance on âθ is defined as

Vaθaθ = min
g
〈ψ| (âθ − âestθ )2 |ψ〉

= min
g
〈ψ| (âθ − gb̂φ)2 |ψ〉

= min
g
〈ψ| (âθâθ − 2gâθ b̂φ + g2b̂φb̂φ) |ψ〉

= min
g

(
Vaθaθ − 2gVaθbφ + g2Vbφbφ

) (1.60)

Differentiating the expression in parentheses with respect to g and setting the result equal
to zero, one can quickly see that the g that will minimize the conditional variance is given
as

gopt =
Vaθbφ
Vbφbφ

(1.61)

We then use the definition of covariance to find the form of this optimal parameter

VÂB̂ =
1

2
〈ψ| ÂB̂ + B̂Â |ψ〉 (1.62)

It is then straightforward to determine that the optimal parameter is given

gopt = cos (θ + φ) tanh 2r (1.63)

Plugging this back into our conditional variance expression we get

Vaθaθ |g=gopt = Vaθaθ −
V 2
aθbφ

Vbφbφ

=
1

2

[
cosh (2r)− cos2(θ + φ) sinh (2r) tanh (2r)

] (1.64)

To get the minimum conditional variance, we need φ = −θ or φ = ±π − θ (because this
maximizes the term we are subtracting, thus minimizing the overall expression). As an
example, let φ = −π/2 and θ = π/2. This yields

â1 cos (
π

2
) + â2 sin (

π

2
)− (b̂1 cos (−π

2
) + b̂2 sin (−π

2
) = â2 + b̂2 (1.65)

which we call the phase sum quadrature. This quadrature will have a minimum variance.
There are other combinations of quadratures that will not be at a minimum, of course. To
see how conditional squeezing varies with homodyne phase (which defines what quadrature
we measure) we will fix the signal phase to be θ = 0 and we will vary the idler phase.
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Figure 1.5: Plot showing how conditional variance or conditional squeezing changes as the quadra-
ture combination (dictated by the signal and idler homodyne phases) changes. Note that for 15dB
injected squeezing, we only retain 12dB. There is always a 3dB penalty in the EPR scheme. This is
because we are measuring the idler beam to infer the quadrature of the signal beam. Thus, we will
not measure as much squeezing as if we had the same total power on one beam and measured the
squeezing directly [10, 18].
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When the homodyne phases are chosen optimally (θ = −φ we get the minimum
conditional variance

Vaθaθ |g=gopt =
1

2

[
cosh (2r)− sinh (2r) tanh (2r)

]
=

1

cosh (2r)

(1.66)

Looking at the graph of this function, we see that the conditional variance very quickly goes
to zero. Thus with moderately high squeezing, measuring the idler quadrature, b̂θ, allows
us to accurately predict the signal quadrature â−θ. By measuring the idler, then, we are
reducing our ignorance and squeezing the chosen quadrature by a factor of 1/ cosh 2r.

Figure 1.6: The signal and idler states represented in optical phase space. By measuring the idler
quadrature b̂θ we reduce the uncertainty in the signal quadrature â−θ by cosh 2r. Note this figure
was directly adopted from [10].

1.2.4 EPR Entanglement in a Detuned Optical Parametric Ampli-
fier

In general, a non-degenerate optical parametric amplifier (OPA) takes in a “seed” beam and
a pump beam (energy source) and produces two correlated beams at different frequencies.
We can learn a lot about this process by examining the interaction Hamiltonian for the
system. This is given as [11]

Ĥint = i~χ(2)αp
(
a†b† − ab

)
(1.67)

We see that the interaction depends on the strength of the pump, αp, as well as the nonlinear
susceptibility of the material χ(2). Nonlinearities of this type can be found in crystals with
certain symmetries (or rather, asymmetries). From this Hamiltonian, we are able to derive
the input-output relation of the NLA (or more specifically, the OPA). Please see Appendix
A.1 for this derivation. The crucial bit of theory is given here.

Consider a squeezer with broad squeezing spectrum (∼ 100 MHz). In our EPR-
based broadband squeezing scheme, the injected light is intentionally offset from the carrier
frequency, ω0 by some ∆/2 where ∆ is of order MHz. This generates correlated sidebands
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Figure 1.7: Visualization of the frequency-mode entanglement in the pumped OPA in our proposed
scheme.

around ω0 and ω0 + ∆ as shown in Fig. 1.7. We introduce the following annihilation
operators to describe our four sidebands

â± ≡ â(ω0 ± Ω) b̂± ≡ b̂(ω0 + ∆± Ω) (1.68)

Where Ω is the audio-sideband frequency. A sideband at this frequency would be induced
by a incident gravitational wave and will thus be relevant as we continue our discussion of
squeezing. We will consider a squeezer with squeezing factor, r, and squeezing angle φ. Our
squeezer is non-degenerate (meaning the output modes are at different frequencies). We will
have a two mode squeezed state coming out of the squeezer. The transformations on our
creation and annihilation operators needed to derive the output state are

Ŝ†b̂±Ŝ = b̂± cosh r − â†∓e2iφ sinh r (1.69)

Ŝ†b̂†±Ŝ = b̂†± cosh r − â∓e−2iφ sinh r (1.70)

Ŝ†â∓Ŝ = â∓ cosh r − b̂†±e2iφ sinh r (1.71)

Ŝ†â†∓Ŝ = â†∓ cosh r − b̂±e−2iφ sinh r (1.72)

where Ŝ is the squeezing operator defined previously such that Ŝ |0〉 = |ξ〉. Note that
we take φ = π/2 to be amplitude squeezed and φ = 0 to be phase squeezed as is the
convention of Kimble et al. [9]. Thus, we see that the squeezing operator serves to “mix”
our sidebands. We said that entanglement was generated, but how can we verify this? In
the single frequency-mode case, all we had to do was calculate the covariance matrix and
compute some determinants. We follow a similar procedure here; however, because we are
looking at the spectrum of positive frequencies, we must calculate the spectral density. The
noise spectral density can just be thought of as the variance of the operator (quantum noise)
at each frequency. We can then generate a noise spectral density matrix and calculate the
relevant determinants needed to verify entanglement as long as the underlying states have
Gaussian wigner functions (see Sec. 1.2.2). The single-sided spectral density is defined as

SÂB̂δ(Ω− Ω′) =
1

2π
〈ψ| Â(Ω)B̂†(Ω′) + B̂†(Ω′)Â(Ω) |ψ〉 (1.73)
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The noise spectral densities can be measured with spectral analyzers in the lab. Sometimes,
two-sided spectral densities (which allow for positive and negative frequencies) are used. In
this case we only positive frequencies and think of the quantity as the variance or covariance
of a given operator at a given frequency. For more on the notion of single-sided noise spectral
density, see Refs. [9, 19] or any resource on signal analysis. Applying this formula, we can
derive the spectral density matrix (see Appendix A.2 for a detailed example) as

S =


Sâ1â1 Sâ1â2 Sâ1b̂1 Sâ1b̂2

Sâ2â1 Sâ2â2 Sâ2b̂1 Sâ2b̂2

Sb̂1â1 Sb̂1â2 Sb̂1b̂1 Sb̂1b̂2

Sb̂2â1 Sb̂2â2 Sb̂2b̂1 Sb̂2b̂2

 (1.74)

S =


cosh 2r 0 cos 2φ sinh 2r sin 2φ sinh 2r

0 cosh 2r sin 2φ sinh 2r − cos 2φ sinh 2r

cos 2φ sinh 2r sin 2φ sinh 2r cosh 2r 0

sin 2φ sinh 2r − cos 2φ sinh 2r 0 cosh 2r

 (1.75)

If we focus on amplitude squeezing (φ = π/2) this matrix just reduces to the single mode
case derived in Section 1.2.2. This tells us that the type of entanglement is essentially
the same. There are other, more mathematically rigorous, entanglement criteria; however,
for our purposes it is sufficient to note that a non-zero off diagonal term in a covariance or
spectral density matrix indicates entanglement. At the end of the day, it is this entanglement
that will allow us to reduce the noise in our GW detector.

1.3 Theory

Now that we have covered the background quantum optics needed to understand the theory
in this project, we are able to get started deriving key expressions. As you will see, much
of the theory below is a specific case of the expressions derived above. We adopt the
notations that are standard in the GW community and leave the lengthiest calculations for
the appendix.

1.3.1 Derivation of the Detector Sensitivity

We first derive the sensitivity formula for the gravitational-wave detector with the EPR
squeezing scheme implemented. This section follows the supplementary materials from the
original paper on this scheme [10]. However, I will carry the derivation out in much more
detail, adding explanation along the way.

First, we assign creation and annihilation operators to each sideband frequency, Ω.
A pumped optical parametric amplifier (OPA) is used to generate the two-mode squeezed
state that enters the dark port of the interferometer. The full derivation of the input-output
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relation for the non-degenerate OPA is given in the first section of Appendix A. The result
for the upper sidebands is

â(ω0 + Ω) = µâin(ω0 + Ω) + νb̂†in(ω0 + ∆− Ω) (1.76)

b̂(ω0 + ∆ + Ω) = µb̂in(ω0 + ∆ + Ω) + νâ†in(ω0 − Ω) (1.77)

where the coefficients µ and ν can be written as µ = cosh r and ν = sinh r. Here, the
squeezing parameter r depends on the χ(2) nonlinearity coefficient of the amplifying medium,
the pump field strength, and the interaction time. To obtain the operators for the lower
sidebands, just take the Hermitian conjugate of equations (1.76) and (1.77).

This method of modelling sidebands using frequency-dependent creation and an-
nihilation operators is called “two-photon formalism” and dates back to 1985 in the work of
Carlton M. Caves [20]. It has become a standard in the gravitational-wave community. In
this formalism, we define the amplitude and phase quadratures of the signal and idler fields
as

â1(Ω) =
â(ω0 + Ω) + â†(ω0 − Ω)√

2

â2(Ω) =
â(ω0 + Ω)− â†(ω0 − Ω)

i
√

2

(1.78)

b̂1(Ω) =
b̂(ω0 + ∆ + Ω) + b̂†(ω0 + ∆− Ω)√

2

b̂2(Ω) =
b̂(ω0 + ∆ + Ω)− b̂†(ω0 + ∆ + Ω)

i
√

2

(1.79)

where ô1 denotes the amplitude quadrature for mode o and ô2 denotes the phase quadrature
for the same mode. Having written the frequencies down explicitly this first time, we will
drop them in future manipulations as it is very cumbersome.

Using homodyne detection, one can detect any quadrature of the optical field
given an appropriate phase reference. If we have two homodyne detectors, one for the â-
field and one for the b̂-field, we can detect any quadrature of both fields. The output of
homodyne detection is really just a photocurrent, so we can experimentally add or subtract
the photocurrents from the two homodyne detectors to create so-called “joint quadratures”
for the â and b̂ fields. For example, consider the amplitude sum quadrature â1 + b̂1. From
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equations (1.76) and (1.77), we have

â1 + b̂1 =
â+ â†√

2
+
b̂+ b̂†√

2

=
µâin + νb̂†in + µâ†in + νb̂in + µb̂in + νâ†in + µb̂†in + νâin√

2

=
(µ+ ν)(âin + â†in)√

2
+

(µ+ ν)(b̂in + b̂†in)√
2

= (cosh r + sinh r)(â1,in + b̂1,in)

= (
er + e−r

2
+
er − e−r

2
)(â1,in + b̂1,in)

â1 + b̂1 = er(â1,in + b̂1,in)

(1.80)

The uncertainties are thus related by

∆(â1 + b̂1) = er∆(â1,in + b̂1,in) (1.81)

In other words, the uncertainty for the amplitude sum quadrature is amplified by er. Fol-
lowing these same steps, one can derive the other joint quadratures. The result is

â1 + b̂1 = er(â1,in + b̂1,in) â1 − b̂1 = e−r(â1,in − b̂1,in) (1.82)

â2 + b̂2 = e−r(â2,in + b̂2,in) â2 − b̂2 = er(â2,in − b̂2,in) (1.83)

We can calculate the uncertainties and show that two joint quadratures are squeezed and
two are anti-squeezed. Now, because the commutator between the phase sum and ampli-
tude difference quadratures is zero, those joint quadratures may be squeezed simultaneously
without violating the Heisenberg uncertainty principle. It was pointed out 30 years ago
that a non-degenerate parametric amplifier could provide an experimental realization of the
famous EPR paradox [17, 21]. In analogy to the original EPR argument, b̂1 is correlated

with â1, while b̂2 is correlated with −â2. More generally, b̂θ = b̂1 cos θ+ b̂2 sin θ is correlated
with â−θ = â1 cos θ − â2 sin θ.

With a homodyne detector for both the signal and idler fields, both â−θ and b̂θ can
be detected. To obtain the joint quadratures, we combine the outputs of the two homodyne
detectors. It turns out that simply summing or taking the difference of the quadratures
is not optimal [22]. To achieve the optimal measurement, the idler field quadrature b̂θ is
filtered before being combined with the signal field quadrature. The final expression for the
filtered joint quadrature is given as

âg−θ = â−θ − gb̂θ
= â1 cos θ − â2 sin θ − g(b̂1 cos θ + b̂2 sin θ)

âg−θ = (â1 − gb̂1) cos θ − (â2 + gb̂1) sin θ

(1.84)

We now calculate the spectral density of this filtered joint quadrature operator.

Sâg−θ â
g
−θ
δ(Ω− Ω′) =

1

2π
〈ψ| âg−θ(â

g
−θ)
† + (âg−θ)

†âg−θ |ψ〉

= Sâ−θ â−θ − gSâ−θ b̂θ − gSb̂θ â−θ + g2Sb̂θ b̂θ

Sâg−θ â
g
−θ

= cosh 2r − g cos 2φ sinh 2r − g cos 2φ sinh 2r + g2 cosh 2r

(1.85)
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where φ here is the squeezing angle from the two-mode squeezing operator. For phase
squeezing injection, φ = 0. So, we have

Sâg−θ â
g
−θ

= (1 + g2) cosh 2r − 2g sinh 2r

= (1 + g2)(cosh2 r + sinh2 r)− 2g(2 sinh r cosh r)

= cosh2 r − 2g sinh r cosh r + g2 sinh2 r + g2 cosh2 r − 2g sinh r cosh r + sinh2 r

= (cosh r − g sinh r)2 + (g cosh r − sinh r)2

Sâg−θ â
g
−θ

= (µ− gν)2 + (ν − gµ)2

(1.86)

To realize the optimal squeezing spectrum, we need to solve for the filter that minimizes the
above spectrum. Thus we differentiate equation (1.86) and set the result equal to zero and
then solve for g.

∂Sâg−θ â
g
−θ

∂g
= 0

2(µ− gν)(−ν) + 2(ν − gµ)(−µ) = 0

−µν + gν2 = µν − gµ2

g(ν2 + µ2) = 2µν

gopt =
2µν

ν2 + µ2

gopt = tanh 2r

(1.87)

Using the optimal filter, our spectrum becomes

S
gopt
âg−θ â

g
−θ

= (1 + tanh2 2r) cosh 2r − 2 tanh 2r sinh 2r

= cosh 2r +
sinh2 2r

cosh 2r
− 2

sinh2 2r

cosh 2r

=
cosh2 2r − sinh2 2r

cosh 2r

S
gopt
âg−θ â

g
−θ

=
1

cosh 2r

(1.88)

We can compare this to the single mode case in section 1.2.3 to see that the result is identical.
This is because the nature of the entanglement in the single and multi-frequency-mode case
is identical. Now, because this noise spectrum quickly goes to zero, the correlation between
â−θ and b̂θ quickly goes to one. Thus, by measuring the idler field quadrature, one can
predict the signal field quadrature with great accuracy.

In gravitational wave interferometers, the signal is detected in the phase quadrature
at the dark port. Thus, to calculate the sensitivity of an interferometer, we need to know
the form of the phase quadrature upon exiting the interferometer. The input-ouput relation
of the quantum noise in the signal channel is given as [9]:

Â2 = e2iβ(â2 −Kâ1) (1.89)

21



Figure 1.8: LBI setup and sensitivity curves for various squeezing schemes. A fixed squeezing angle
only surpasses the SQL (black dotted line) over a narrow frequency band. Our broadband squeezing
scheme (purple curve) is achieved by rotating the noise ellipse in a frequency-dependent way as
shown below the plot. Acronyms used are: end test mirror (ETM), input test mirror (ITM), power
recycling mirror (PRM), signal recycling mirror (SRM), and output mode cleaner (OMC).

where K is an opto-mechanincal coupling constant which serves to couple amplitude fluctu-
ations to phase fluctuations and is given as

K =
2h2

SQLLarmω0Parmγω
2
s

~c[γ2Ω2 + (Ω2 − ω2
s)2]

(1.90)

where h2
SQL is the standard quantum limit for the single-sided spectral density, Larm is the

interferometer arm length, ω0 the laser frequency, Parm the circulating power of the inter-
ferometer arm, Ω the sideband (and GW signal) frequency, ωs is a resonant frequency that
arises from the coupling between the signal recycling and arm cavities [23]. The frequency
and bandwidth for this resonance are given as

ωs =
cTITM

2
√
LarmLSRC

(1.91)

γ =
cTSRM

4LSRC
(1.92)

Equation (1.89) can also be written as

Â2 = e2iβ(
√

1 +K2)(â1 cos ξ − â2 sin ξ) (1.93)
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where ξ = − arctan 1
K . As the connection between these two equations is not immediately

clear, it is worth going through now. First, note that

sin (arctanx) =
x√

1 + x2
cos (arctanx) =

1√
1 + x2

(1.94)

So we can write the following

Â2 = e2iβ(
√

1 +K2)(â1 cos ξ − â2 sin ξ)

= e2iβ(
√

1 +K2)(â1 cos (− arctan
1

K
)− â2 sin (− arctan

1

K
))

= e2iβ(
√

1 +K2)(â1(
1√

1 + 1
K2

) + â2

1
K√

1 + 1
K2

)

= e2iβ(
√

1 +K2)(â1(
−K√

1 +K2
) + â2

1√
1 +K2

)

Â2 = e2iβ(â2 −Kâ1)

(1.95)

Note that the negative sign on the K in the second to last line is valid because we took a
1/K2 out from under the square root, so we have the freedom to take either the positive
or negative root. Thus, we see that the expressions are in fact equivalent. The reason for
writing this expression in a seemingly more complex way than Eq. (1.89) is to illuminate
that the quadrature of the signal field that is outputted by the interferometer is − arctan 1

K .
The important point is that it is a function of the opto-mechanical coupling constant K and
thus a function of interferometer parameters. Thus, to maximize the correlation between
the signal and idler field, we would want to detect the idler quadrature b̂arctan 1

K
because

â−θ is maximally correlated with b̂θ. Ideally, then, we would detect

B̂2 = eiα(−b̂1 sin Φrot + b̂2 cos Φrot) (1.96)

where eiα is an unimportant phase factor accumulated as the sidebands propagate through
the interferometer and Φrot = arctanK. So, assuming we can design the interferometer so
that our noise ellipse rotates by a total angle Φrot = arctanK throughout the length of
the interferometer, we would then filter the output and combine it with the signal field as
mentioned above

Âg2 = Â2 − gB̂2 (1.97)

The rest of this derivation just becomes a special case of the general method above, so not
as much detail will be shown. The spectral density for this filtered joint quadrature is given
as

SÂg2Â
g
2

= SÂ2Â2
− gSÂ2B̂2

− gSB̂2Â2
+ g2SB̂2B̂2

(1.98)

Differentiating this expression with respect to g, setting equal to zero, and solving for g
yields

gopt =
SÂ2B̂2

SB̂2B̂2

(1.99)

Remembering that the injected squeezing angle is taken to be φ = 0, we find

gopt =
SÂ2B̂2

SB̂2B̂2

=
ei(2β−α)

√
1 +K2 sinh 2r

cosh 2r
= ei(2β−α)

√
1 +K2 tanh 2r (1.100)
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Plugging equation (1.100) into equation (1.98) we see

S
gopt

Â2Â2
= SÂ2Â2

−
SB̂2Â2

SÂ2B̂2

SB̂2B̂2

=
1 +K2

cosh 2r
(1.101)

This equation is the conditional squeezing spectrum of the quantum noise exiting the inter-
ferometer. If there is a gravitational wave present, the signal becomes [9]:

ÂGW2 =
√

2Keiβ h

hSQL
(1.102)

With this as the signal field and Eq. (1.96) as the idler field, the spectral density for the
interferometer with EPR squeezing ideally implemented is given as

Sh =
h2

SQL

2 cosh 2r

(
K +

1

K

)
(1.103)

If you compare this to Eq. (27) from Ref. [9], you will see that the EPR squeezing
scheme provides a cosh 2r suppression of quantum noise.

1.3.2 Approximating Rotation Angle

We cannot achieve the ideal rotation angle without a separate filter cavity. If we are going
to approximate the rotation angle, then, we need to bound the error to ensure we achieve
comparable broadband noise reduction.

An expression that takes into account both the exact and approximate rotation
angle is given in Eq. (46) of reference [9]:

Sh =
h2

SQL

2

(
1

K
+K

)(
cosh 2R− cos

[
2(Φapprox

rot + Φrot)
]

sinh 2R
)

(1.104)

As this expression currently stands, we cannot apply it to our setup because the R in this
expression and the r in our expressions thus far refer to two different squeezing parameters.
Thus, we need to solve for R in terms of r and then substitute back into Eq. (1.103).
Comparing Eq. (48) from KLMTV to Eq. (1.103) we see that

e−2R =
1

cosh 2r
(1.105)

which implies

R =
1

2
ln (cosh 2r) (1.106)

Now, plugging Eq. (1.106) into Eq. (1.103) and assuming δΦ = Φapprox
rot << 1 so that we

can use a second order Taylor series approximation for cosine, we get

Sh ≈
h2

SQL

2

(
1

K
+K

)(
cosh2 2r + 1

2 cosh 2r
− (1− 2δΦ2)

cosh2 2r − 1

2 cosh 2r

)
Sh ≈

h2
SQL

2 cosh 2r

(
K +

1

K

)
+
h2

SQL

2

sinh2 2r

cosh 2r

(
K +

1

K

)
δΦ2

(1.107)
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where the first term is the exact value and the second term is an error term due to not
realizing the rotation angle precisely. The ratio between the error term and the exact value
is sinh2 (2r)δΦ2. In the case of a 15dB squeezing injection as considered in [10], r = 1.73,
so the correction term is ≈ 249δΦ2. So, if we want to keep the relative correction to less
than 10%, we will need the error in the rotation angle δΦ < 0.02 rad.

249(0.02 rad)2 × 100% = 9.96% < 10% (1.108)

So, as long as the proposed scheme keeps the overall error in the rotation angle to less than
0.02 rad, we will suffer no more than a 10% degradation in noise reduction. This bound will
heavily restrict our parameter space as we will see in the next section.

1.4 Results

In the case where we implement long, low loss external filter cavities, the ideal rotation angle
would be Φrot = arctanK. However, we propose to use the signal recycling interferometer
itself as the filter cavity. The longer the baseline of the interferometer, the longer the filter
cavity needed. As such, it would become increasingly difficult to use external cavities. For-
tunately, by using the interferometer itself as the filter cavity, the long baseline requirement
for the filter cavity is naturally sufficed by the long baseline of the interferometer (because
the are the same). In other words, using an EPR-based scheme that takes advantage of the
dual role of the interferometer is naturally scalable to longer baselines. The figure below
summarizes how to think of the full signal recycling cavity as a simple two-mirror filter
cavity.
In our proposed EPR scheme, the achievable rotation angle is given as [25]

Φapprox
rot = arctan

(
Ω + δf
γf

)
+ arctan

(
−Ω + δf

γf

)
(1.109)

where δf and γf are the required detuning and bandwidth of the signal recycling interfer-
ometer with respect to the idler field, respectively [10,26].

γf =

√
128ω0Parm

mc2TSRC
(1.110)

δf = −γf (1.111)

From the definition of the signal recycling interferometer half bandwidth and the signal
recycling cavity transmission given in [10,24]

γf =
c|TSRC|
4Larm

(1.112)

TSRC =
i
√
TSRMTITMe

2iφSRC

(1−
√
RITMRSRMe2iφSRC)

(1.113)

we can derive

γf =
TSRM

1 +RSRMRITM −
√
RSRMRITM cos 2φSRC

(1.114)

We then equate this with Eq. (1.110) and solve for φSRC. This is the exact phase accumu-
lated by the idler after one round trip in the SRC, so we denote it φexact

SRC .
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Figure 1.9: The signal recycling interferometer can be mapped to a three mirror cavity. The signal
recycling cavity can then be mapped into a single mirror with an effective transmissivities and
reflectivities [24]. This final, two-mirror cavity is resonant for the signal beam (at ω0) but detuned
for the idler beam (at ω0 + ∆), thus the idler simply experiences a frequency-dependent ellipse
rotation. That is, different off-resonant sidebands evolve under a free evolution governed by the
field Hamiltonian (as described in Sec. 1.2.1). This allows us to use the interferometer itself as a
filter cavity and to thus achieve broadband squeezing.
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For our EPR squeezing scheme to work, we need to tune certain parameters to
meet the following resonance condition

2(ωidler + δf )(
Larm

c
) + arg [RSRC] = 2nπ

2(ω0 + ∆ + δf )(
Larm

c
) + arg [RSRC] = 2nπ

2(∆ + δf )(
Larm

c
) + arg [RSRC] = 2nπ

(1.115)

because ω0L/c = 2mπ and where RSRC is effective reflectivity of the signal recycling cavity
and is given as

RSRC =

√
RITM −

√
RSRMe

2iφSRC

1−
√
RITMRSRMe2iφSRC

(1.116)

So, we require δf = −γf and then tune the idler detuning, ∆, and φexact
SRC to find solutions to

Eq. (1.115). Note that the tuned idler phase is denoted as φapprox
SRC . It is acceptable to tune

this slightly from its exact value because the overall rotation angle is not very sensitive to
changes in the SRC phase. Also note that ∆ is given as

∆ =
(φSRC + nπ)c

L
(1.117)

so it is actually altered by tuning the integer parameter n, which tells us by how many free
spectral ranges we shift the initial detuning. This is done to achieve a final detuning in the
MHz regime.

The main arm length was proposed in the initial ET design study [5] to be around
10km, so we search for solutions where

Larm ∈ [9995, 10000] (1.118)

We search for signal recycling cavity lengths around those proposed in the Einstein Telescope
design study [5]

LSRC ∈ [100, 200] (1.119)

The total idler detuning, ∆, has to be in the low Mhz regime because if it was lower it would
interfere with the carrier, but if it were too high, electronics would not work optimally. The
allowable range is taken to be

∆

2π
∈ [5, 50]MHz or ∆ ∈ [10π, 100π]× 106radians (1.120)

The minimum allowed detuning is 5MHz and this will occur when LSRC is at its maximum,
i.e. 200m. This will correspond to the minimum allowed n. From Eq. 1.117 we have

nmin =
1

π
(
∆minLSRC,max

c
− φSRC) ≈ 7 (1.121)

We round to the nearest integer value. Similarly for the maximum allowed n

nmax =
1

π
(
∆maxLSRC,min

c
− φSRC) ≈ 33 (1.122)
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We must search for integer values such that

n ∈ [7, 33] (1.123)

The final tunable parameter is φapprox
SRC . We can sustain some error in the single trip phase

the idler accumulates travelling through signal recycling cavity because the rotation angle
is not highly sensitive to this phase. This makes it easier for us to find solutions to our
resonance condition. As noted before, we must keep the error in the overall rotation angle
to less than 0.02 rad. Mathematically, we need

|∆Φapprox
rot | < 0.02 rad (1.124)

where ∆Φapprox
rot is given in Eq. (1.109).

To linear order, the error in our rotation angle is related to the error in the signal
recycling phase by

∆Φapprox
rot = ∆φSRC

dΦapprox
rot

dφSRC
(1.125)

We need to make sure that the error in rotation angle is less than 0.02rad over the whole
positive frequency domain. Mathematically, we need

max
Ω
|∆φSRC

dΦapprox
rot

dφSRC
| < 0.02 (1.126)

Equivalently, because φSRC is independent of Ω, we can write

|∆φSRC| <
0.02

max
Ω
|dΦapprox

rot

dφSRC
|

(1.127)

Using Mathematica to differentiate Eq. (1.109) and using the given parameters for ET [5],
one finds

|∆φSRC| < 0.002 (1.128)

Thus, the domain of approximate phases is given as

φapprox
SRC ∈ [φexact

SRC − 0.002, φexact
SRC + 0.002] (1.129)

Tunable Parameter Domain Step Size

Larm [9995,10005] 1

LSRC [100,200] 1

n [7,33] 1

φapprox
SRC [φexact

SRC − 0.002, φexact
SRC + 0.002] 0.0001

There are 1.2 million combinations of these parameters with the given step sizes.
We took advantage of the fact that each combination is independent and can thus be checked
in parallel. Our search resulted in 3444 working points summarized in Fig. 1.10.

The step sizes were chosen with computational expense in mind, so the resolution
is not particularly high. As such, Fig. 1.10 shows several “dead zones” as well as a couple
“hot points”. The natural question to ask is whether or not these are real or whether
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Figure 1.10: Working points of EPR squeezing scheme in ET. Each point represents a combination
of the four tunable parameters for which the resonance condition was met. The color of the dot
represents how many working points are at each combination of LSRC and Larm. For example, the
red dot near the bottom right indicates there are 33 combinations of ∆ and φapprox

SRC for which the
resonance condition was met when LSRC = 122m and Larm = 10, 004m

they are a byproduct of our numerical precision. Zooming in around two such points, we
produced the subfigures on the righthand side of Fig. 1.10. In the case of the “dead zone”,
we see that there are actually working points where there appeared to be none. This is
promising, as it points to the conclusion that a working point can be found given precise
fine-tuning. Similarly, we zoomed in on a “hot point” (top right panel of Fig. 1.10) and
interestingly we still see a line structure where there are as many as 35 working points
surrounded by areas that apparently have zero working points. So, to check whether this
was a real feature of the system or an issue of numerical precision, we again zoomed in round
the “hot points.” What we found, once again, is that the “dead zones” must be simply due
to the numerical precision chosen. With more time or computational power (or both) one
could map a relatively smooth landscape of working points for ET. In our case, our goal was
to simply show that this EPR-based squeezing scheme is not very sensitive to the actual
arm length and SRC length, and that we can always find some working points for given a
set of parameters.
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Using one of the many working points, we were able to plot the sensitivity of our
approximate scheme alongside the exact scheme. It is clear from Fig. 1.11 that there is good
agreement between the two. This is result of us heavily restricting our parameter space to
bound the error.

Figure 1.11: Top panel: square root of the single-sided noise power spectral density (sensitivity
of the interferometer, dotted curve) plotted alongside the sensitivity when ideal ellipse rotation is
achieved (top red curve). Bottom panel: Absolute value of the error between the ideal broadband
squeezing scheme and our proposed EPR-based scheme. The absolute error is just the absolute value
of the difference between the exact and approximate rotation angles.

1.5 Conclusions

We have shown that EPR entanglement-based squeezing can be implemented in LBIs. We
derived the relevant bounds on the tunable parameters to ensure that our approximate
ellipse rotation scheme very nearly matches the exact rotation achievable through the use
of external filter cavities. The goal of the project was to map the interferometer working
points for this squeezing scheme in LBIs like ET and Cosmic Explorer. We accomplished
this at a rather low resolution of the parameter space. Zooming in around areas that had
very many working points or very few showed that the landscape of working points seems
to be quite smooth. In other words, if an area appears to have no working points, it is likely
because the step size used to iterate through the parameter space was too low. This is good
news for experimentalists, for if they cannot lock the interferometer at one exact spot, there
should be another working point centimeters away. This result indicates the experimental
feasibility of the scheme. We conclude that EPR-based squeezing is an appealing alternative
to other broadband quantum noise reduction schemes that require additional filter cavities.
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Chapter 2

Project 2: The Quantum Limits
of Beam Displacement
Measurements

2.1 Background and Introduction

Beam displacement measurements have been of interest to the quantum measurement com-
munity for several decades [27–29]. Because we deduce laws about the physical world
through measurement, it is always desirable to be able to make more precise measure-
ments. The natural question that arises is always: how well can we do? How precisely can
we measure something given a certain set-up. Answering this question is the theme of this
project.

Specifically, we calculate the signal-to-noise ratio (SNR) for various beam displace-
ment detection schemes. Our goal was to determine which detector could more effectively
measure a deflected TEM00 beam: a split detector (SD) or a position sensitive detector
(PSD). The latter does not appear to have been treated quantum mechanically in the lit-
erature. Thus, to the best of our knowledge, our result is novel and of interest to anyone
attempting to measure the displacement of a laser beam with great precision.

There are many applications for the precise measurement of beam displacements.
The application most often mentioned is atomic force microscopy (AFM) readout. In an
AFM, a stylus scans over a material and receives a time-varying force. This force raises or
lowers the stylus and deflects the laser beam impinging on it. The detection of this deflection
limits the resolution of the AFM. Thus, with higher SNRs in the AFM readout, one could
achieve higher resolution AFMs.

We first review the analysis of linear interferometers and split detectors laid out
by Barnett et al. [27]. Having learned the methods of analysis from them, we make small
improvements to their technique and show how the calculation for both the split detector
and the position sensitive detectors can be treated almost identically, by using what we
call a “detector response function.” Finally, we show that the PSD should have a standard
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quantum limit (SQL) of about 2dB below that of the SD. We then show that this is expected
when one examines the so-called Quantum Cramer-Rao Bound (QCRB) for the system.

2.2 Linear Interferometer

We first derive the sensitivity of a simple Michelson interferometer following the analysis
laid out by Barnett et. al. [27].

Figure 2.1: A simple Michelson interferometer.

A Michelson-type interferometer has an input-output relation given as

âout = cos
(φ

2

)
â+ sin

(φ
2

)
b̂ (2.1)

b̂out = cos
(φ

2

)
b̂− sin

(φ
2

)
â (2.2)

where φ is the relative phase between the two arms. If the two arms are perfectly in
phase (φ = 0), then âout = â and b̂out = b̂. If they are fully out of phase (φ = π), then

âout = b̂ and b̂out = â. Any intermediate configuration gives some linear combination of
the two fields, as expected. Where, as above, we are working in the Heisenberg picture and
doing calculations on the creation and annihilation operators associated with certain modes
of the quantized electromagnetic field. More on this in the next section, where we begin to
discuss the SQL.

2.2.1 Standard Quantum Limit

Roy J. Glauber established the theory of optical coherence over 50 years ago [30]. In
his seminal paper, he showed that the photocurrent produced by a photodiode should be
proportional to the quantity 〈ψ(−)ψ(+)〉 where ψ(+) is the optical field impinging on the
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photodiode. Thus, any time we wish to calculate a signal from a photodetector, we should
calculate this expectation value. However, it turns out that the above quantity is always
proportional to 〈â†â〉 where â is the creation operator for your quantized electromagnetic
field. Recall, that the creation and annihilation operators replace the complex amplitudes
in the classical description of an electromagnetic field. We often refer to the operator â as a
mode of the electromagnetic field when in fact it is more precise to say that it is the creation
operator associated with a mode of the quantized electromagnetic field. Where a mode is
simply a normalized solution to Maxwell’s equations in free space. See Ref. [16] for a great
review about modes and states in quantum optics. For our purposes, it suffices to say that
in the Heisenberg picture, it is easier to use the creation and annihilation operators when
doing direct detection calculations, rather than the full field operator. As we will see in
later sections, though, sometimes the first principles approach is required. With all this in
mind, we should feel comfortable writing the signal of an interferometer with direct readout
as the difference in photon number at the two output ports

Signal = 〈â†outâout − b̂†outb̂out〉 (2.3)

= 〈(â†â− b̂†b̂) cos (φ) + (â†b̂+ b̂†â) sin (φ)〉 (2.4)

The signal when one arm gets a tiny (∆φ << 1) phase shift, is

Signal = 〈(â†â− b̂†b̂) cos (φ+ ∆φ) + (â†b̂+ b̂†â) sin (φ+ ∆φ)〉 (2.5)

The SQL is reached, by definition, when one input is prepared in a coherent state
and the other is left in a vacuum state. Here, we have the field represented by the operator
â in a coherent state, |α〉, and the field associated with b̂ in a vacuum state, |0〉. With this,
the signal becomes

Signal = |α|2 cos (φ+ ∆φ) (2.6)

because â |α〉 = α, 〈α| â† = α∗, and b̂ |0〉 = 0.

We wish to operate the interferometer such that it is as sensitive as possible to
small changes in phase. In other words, we need to find where the slope of the signal achieves
a maximum. This is equivalent to finding the inflection points of the signal by taking two
derivatives with respect to ∆φ and setting that expression equal to zero

∂2

∂∆φ2
[Signal] = −|α|2 cos (φ+ ∆φ) = 0 (2.7)

This is true when φ = ±π/2 (remember, we assume ∆φ << 1). We choose φ = −π/2 so we
have a positive signal slope. With this working point and focusing on small phase shifts (so
that we can use a first order Taylor expansion of the sinusoid) we find

Signal = |α|2 cos (−π/2 + ∆φ) (2.8)

= |α|2 sin (∆φ) (2.9)

Signal ≈ |α|2∆φ (2.10)

The noise is set by the square root of the variance of whatever Hermitian operator
represents the signal (in our case this is the photon number difference operator from Eq.
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(??)). Note that this variance is calculated without any phase shift, so setting ∆φ = 0 and
φ = π/2, we get

Variance = 〈(â†outâout − b̂†outb̂out)
2〉 − 〈â†outâout − b̂†outb̂out〉

2
(2.11)

= 〈(â†outâout − b̂†outb̂out)
2〉 (2.12)

= 〈â†b̂â†b̂+ â†b̂b̂†â+ b̂†ââ†b̂+ b̂†âb̂†â〉 (2.13)

Eq. (2.11) is the general variance expression for this working point. The standard quantum
limit is reached when mode a is in a coherent state and mode b in a vacuum state. In this
case, the variance is simply

Variance = |α|2 (2.14)

The noise is set by the square root of this expression. Thus, the signal-to-noise ratio (SNR),
where |α|2 = N is the mean number of photons is

Signal

Noise
= N1/2∆φ (2.15)

The minimum resolvable phase shift occurs when the SNR equals one. Thus, we have

∆φ = N−1/2 (2.16)

This is the SQL of detecting a small phase shift using a linear Michelson interferometer.

2.2.2 Surpassing the SQL

We can surpass the SQL by preparing mode b in a squeezed vacuum state. We make
the simplifying assumption that the mirrors are infinitely massive, thus radiation pressure
forces from the light will not add noise to our system. Thus, the limiting noise source is
quantum shot noise. This noise can be thought of in several different ways, but here we
think of it as uncertainty in the phase quadrature of the quantized electromagnetic field
which affects the statistical distribution of the photon number difference and thus weakens
the interferometer’s ability to estimate phase. Thus, to reduce this noise we prepare mode
b in a phase-squeezed vacuum state. A single-mode squeezed vacuum state is written as

|Ψb〉 = |ξ〉 = Ŝ |0〉 = e(−ξâ†2+â2ξ∗)/2 |0〉 (2.17)

where ξ = re2iθs , r is the squeezing factor that defines the strength of your squeezer, and
θs is the squeezing angle that defines what quadrature your are squeezing. In our case, we
need a phase-squeezed vacuum state, so we will set θs = 0. Practically speaking, one only
needs to know how the phase squeezing operator transforms our creation and annihilation
operators. The relevant transformations are

Ŝ†b̂Ŝ = b̂ cosh r − b̂† sinh r (2.18)

Ŝ†b̂†Ŝ = b̂† cosh r − b̂ sinh r (2.19)

From Eq. (2.5) above, we know that our signal is most generally written as

Signal = 〈(â†â− b̂†b̂) cos (φ+ ∆φ) + (â†b̂+ b̂†â) sin (φ+ ∆φ)〉 (2.20)
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Now letting φ = −π/2 and ∆φ << 1 as before, our signal becomes a first order approxima-
tion of Eq. (2.5)

Signal = 〈(â†â− b̂†b̂)∆φ− (â†b̂+ b̂†â)〉 (2.21)

We now assume mode a is in a strong coherent state which can be approximated as a classical
field amplitude such that â ≈ α = |α|eiθ where θ = arg (α). The signal becomes

Signal = ∆φ(|α|2 − 〈b̂†b̂〉)− |α| 〈b̂e−iθ + b̂†eiθ〉 (2.22)

Now to update the variance, we return to Eq. (2.11)

Variance = 〈â†b̂â†b̂+ â†b̂b̂†â+ b̂†ââ†b̂+ b̂†âb̂†â〉 (2.23)

= 〈â†b̂â†b̂+ â†b̂b̂†â+ b̂†(1 + â†â)b̂+ b̂†âb̂†â〉 (2.24)

The only difference between the above lines is that we have used the boson commutation
relation for the creation and annihilation operator [â, â†] = 1. This so-called normal ordering
was not needed before because mode b was in a vacuum state and thus most terms went
to zero. With this change made, and remembering that we are approximating mode a as a
classical field, we find a variance of

Variance = 〈|α|2e−2iθ b̂2 + |α|2e2iθ b̂†2 + |α|2b̂b̂† + b̂b̂† + |α|2b̂†b̂〉 (2.25)

= |α|2 〈(b̂e−iθ + b̂†eiθ)2〉+ 〈b̂†b̂〉 (2.26)

So, we see that the variance depends on the uncertainty in vacuum field entering the inter-
ferometer. It is these so-called vacuum fluctuations that limit the sensitivity of an interfer-
ometer. Specifically, we are saying that the variance in the quadrature operators of the field
associated with the b̂ operator limits the sensitivity of the interferometer. Recall that the
amplitude and phase quadratures are proportional to b̂+ b̂† and i(b̂− b̂†), respectively. The
exact normalization differs between sources but the crucial point is that these quadratures
are observable quantities analogous to the amplitude and phase of classical light. In this
case, the quantum fluctuations in the phase quadrature limit the sensitivity of our detector.

To surpass the SQL, we let θ = 0 in Eq. (2.24) and prepare b in an phase-squeezed
vacuum state. With these changes our variance becomes

Variance = |α|2 〈(b̂+ b̂†)2〉+ 〈b̂†b̂〉 (2.27)

= |α|2 〈b̂b̂+ b̂b̂† + b̂†b̂+ b̂†b̂†〉+ 〈b̂†b̂〉 (2.28)

= |α|2 〈ξ| b̂b̂+ b̂b̂† + b̂†b̂+ b̂†b̂† |ξ〉+ 〈ξ| b̂†b̂ |ξ〉 (2.29)

Using the fact that |ξ〉 = Ŝ |0〉, ŜŜ† = Î, and the transformations of the creation and
annihilation operators given above we get

Variance = |α|2 〈0| Ŝ†b̂ŜŜ†b̂Ŝ + Ŝ†b̂ŜŜ†b̂†Ŝ

+ Ŝ†b̂†ŜŜ†b̂Ŝ + Ŝ†b̂†ŜŜ†b̂†Ŝ |0〉+ 〈0| Ŝ†b̂†ŜŜ†b̂Ŝ |0〉
= |α|2e−2r + sinh2 r

(2.30)

where we note that 〈b̂†b̂〉 is the expected number of photons in mode b which is in a squeezed
vacuum state. It is interesting and slightly counterintuitive that there is a nonzero expected
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number of photons in a squeezed vacuum (given that vacuum is a term that is associated
with nothingness, etc). The signal to noise ratio is then given as

SNR =
∆φ(|α|2 − sinh2 r)

(|α|2e−2r + sinh2 r)1/2
(2.31)

While in the low squeezing regime, we assume |α|2 >> sinh2 r thus our SNR becomes

SNR ≈ ∆φ|α|2

|α|e−r
= ∆φN1/2er (2.32)

where |α|2 ≈ N . Setting this expression equal to one we can solve for the minimum resolvable
phase shift

∆φ =
1

N1/2er
(2.33)

Thus we surpass the SQL by a factor of er. We must note, however, that we have made
some crucial simplifying assumptions. Primarily, the assumption that the coherent field is
strong enough to be treated as a classical field is a big assumption. This analysis would
hold well in an infinite energy limit of the coherent field. Of course, at finite energies, the
quantum nature of the coherent field would need to be taken into account. Moreover, we
assume infinitely massive mirrors – an assumption that may not hold depending on the power
regime and mirror properties. Nonetheless, the analysis gives a nice, simple introduction to
the concept of the SQL and how squeezed light can be used to surpass it. We now turn to
our next detector: the split detector.

2.3 Split Detector in Single-mode Regime

We will now analyze the performance of a split detector. A split detector is simply a seg-
mented photodiode wired such that the photocurrent produced on one side is subtracted
from the photocurrent produced on the other after some amplification. The detector re-

Figure 2.2: Schematic of a split detector with impinging beam with Gaussian beam profile. Left:
beam is centered perfectly on the detector and the expected current difference is zero. Right: a
slightly displaced beam gives rise to a difference in photocurrents. This acts as our signal.

sponse function, which we denote Θ(x), is simply a step function. What is actually measured
depends on the light impinging on the detector. Thus, the detector mode is the detector
response function multiplied by the beam profile. In the case of the split detector, the de-
tector mode is a flipped Gaussian. A flipped Gaussian is just the product between a step
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function and a normal Gaussian. The step function causes the Gaussian to “flip” at x = 0
as shown in Fig. 2.3

Figure 2.3: Visualization of the detector mode times the transverse optical mode, which yields the
detected mode.

Here we formally derive the signal to noise ratio when either zero or one spatial
mode is squeezed. Unlike Barnett et al. [27], we encode the beam displacement information
in the coherent state of light. This is a general method that can be utilized in other beam
displacement detector set-ups.

2.3.1 Deflected Coherent State

Let â(x, y) denote a field annihilation operator associated with the point (x,y) in space and
ui(x, y) be the ith basis mode function. Our field is given as

ψ̂(+)(x, y) =

n∑
i

ui(x, y)â(x, y) (2.34)

which, because
∫ ∫

u∗i ujdxdy = δij implies

âi =

∫ ∫
u∗i (x, y)ψ̂(+)(x, y)dxdy (2.35)

This is analogous to the decomposition of the classical electromagnetic field with complex
amplitudes replaced by bosonic creation/annihilation operators as mentioned in the previous
project. A fine review of modes and states in qauntum optics is given in Ref. [16]. Here
we have the decomposition of our transverse beam profile into an orthogonal set of spatial
modes. Our initial quantum state is described as

|Ψ〉 = |α〉0 ⊗ |0〉1 ⊗ |0〉2 ⊗ . . . (2.36)

where the subscript makes explicit what mode to which we are referring. We model the
small displacement using a unitary operator, Û0(θ) (where θ is a small distance) such that

|Ψ(θ)〉 = Û0(θ) |Ψ〉 (2.37)

= Û0(θ) |α〉0 ⊗ |0〉1 ⊗ |0〉2 ⊗ . . . (2.38)

= Û0(θ)eαâ
†
0−α

∗â0 |0〉0 ⊗ |0〉1 ⊗ |0〉2 ⊗ . . . (2.39)

= Û0(θ)eαâ
†
0−α

∗â0Û†0 (θ) |0〉0 ⊗ |0〉1 ⊗ |0〉2 ⊗ . . . (2.40)
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Now, expanding the exponential in Eq. (2.40) and multiplying by the operator on either
side, we would get

|Ψ(θ)〉 = eαÛ0(θ)â†0Û
†
0 (θ)−α∗Û0(θ)â0Û

†
0 (θ) |0〉0 ⊗ |0〉1 ⊗ |0〉2 ⊗ . . . (2.41)

Our new state will be determined once we work out the transformations on our creation
and annihilation operators. From our definitions, we have

Û(θ)â0Û
†(θ) =

∫ ∫
u∗0(x, y)Û(θ)ψ̂(+)(x, y)Û†(θ)dxdy

=

∫ ∫
u0(x, y)ψ̂(+)(x− θ, y)dxdy

(2.42)

Letting x′ = x− θ and then expanding the mode function to first order in θ (that is, we are
dropping higher order terms in the Taylor expansion because we assume the displacement
is very small) we can write

Û(θ)â0Û
†(θ) =

∫ ∫
u0(x′ + θ, y)ψ̂(+)(x′, y)dx′dy

=

∫ ∫
(u0(x′, y) + θu′0(x′, y))ψ̂(+)(x′, y)dx′dy

(2.43)

Now, u′0(x, y) is not dimensionally consistent with or orthonormal to u0(x, y). Meaning,
when we take the spatial derivative of our mode, the dimension changes. If we wish to
use the derivative of the zeroth mode as another element of our basis, we must work out
the proportionality constant that will allow us to remain dimensionally consistent and to
maintain the orthonormality of our mode basis. Let’s call the function we seek u1. It is
given as

u1(x′, y) = Bx

(
e
− x
′2+y2

2w2
0

)
(2.44)

To ensure normalization we integrate over all space and set the integral equal to one. This
allows us to solve for B. The resultant mode function is given as

u1(x′, y) = −
√

2

π

x′

w2
0

(
e
− x
′2+y2

2w2
0

)
(2.45)

One can then derive u′0(x′, y) by differentiating with respect to x

u0 =
1√
πw0

e
− x

2+y2

2w2
0 (2.46)

u′0(x′, y) = −x
′e
− x
′2+y2

2w2
0

√
πw3

0

(2.47)

We see that u′0(x′, y) = u1(x′,y)√
2w0

. Making this substitution to equation

Û(θ)â0Û
†(θ) =

∫ ∫
(u0(x′, y) + θ

u1(x′, y)√
2w0

)ψ̂(+)(x′, y)dx′dy

= â0 +
θ√
2w0

â1

(2.48)
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Figure 2.4: We break the modes into an even and flipped Gaussians to simplify the calculation.

The daggered expression is identical (but with creation instead of annihilation operators).
Substituting these into Eq. (2.41) gives

|Ψ(θ)〉 = e
α(â†0+ θ√

2w0
)â†1−α

∗(â0+ θ√
2w0

â1) |0〉0 ⊗ |0〉1 ⊗ |0〉2 ⊗ . . . (2.49)

Rearranging we find

|Ψ(θ)〉 = |α〉0 ⊗ |
θα√
2w0

〉
1

⊗ |0〉2 ⊗ |0〉3 . . . (2.50)

Because the displacement is small, it is sufficient to focus only on first order in θ (where again,
θ represents our small displacement). Thus, we have chosen a basis in which the deflection
excites the first mode and the higher order modes are left approximately in vacuum states.
This would not hold for large displacements. To first order, we see that our state now
depends on the small displacement, as desired.

2.3.2 Standard Quantum Limit

Following the definitions in Barnett et. al. [27], we introduce the flipped Gaussian uf ≡
u0sign(x). This differs slightly from their notation, in which they had an even and odd
mode denoted ue and uo, respectively. The mode to which the left side of the split detector
is sensitive is then given as

uL =
1√
2

(u0 + uf ) (2.51)

and the right side of the split detector sees

uR =
1√
2

(u0 − uf ) (2.52)

The creation operators for these modes have the same form

âL =
1√
2

(â0 + âf ) (2.53)

âR =
1√
2

(â0 − âf ) (2.54)

These modes can be thought of as “what the detector sees” and will make our calculation
of the signal-to-noise ratio far simpler than working from the definition of our field in Eq.
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Figure 2.5: We break the modes into an even and flipped Gaussians to simplify the calculation.

(2.34). Now, assuming perfect photodiodes, the split detector’s signal will simply be the
difference in the number of photons impinging on the left and right photodiode

〈N̂L〉 − 〈N̂R〉 = 〈â†LâL − â†RâR〉 (2.55)

= 〈1
2

(â†0 + â†f )(â0 + âf )− 1

2
(â†0 − â

†
f )(â0 − âf )〉 (2.56)

= 〈â†0âf + â†f â0〉 (2.57)

In order to act on the state that is given in Eq. (2.50), we need to find out what âf is in
terms of the mode basis used to calculate the state. To do so, we return to the definition in
Eq. (2.35)

âf =

∫ +∞

−∞

∫ +∞

−∞
u∗f ψ̂

(+)(x, y)dxdy (2.58)

=

∫ +∞

−∞

∫ +∞

−∞
u∗f [â0u0 + â1u1 + . . . ]dxdy (2.59)

=

∫ +∞

−∞

∫ +∞

−∞
â1u
∗
fu1 + â3u

∗
fu3 + . . . dxdy (2.60)

where the last equality holds because uf×(any even mode) integrates to zero over all space.
Now, the remaining terms are even because uf×(any odd mode) is even thus we use the
fact that ∫ +∞

−∞
(even function)dx = 2

∫ +∞

0

(even function)dx (2.61)

Moreover, we use the fact that uf = −u0 from 0→∞ and that all modes other than â1 are
in vacuum. Using all these facts we arrive at the expression

âf = −2

∫ +∞

−∞

∫ +∞

0

â1u0u1dxdy (2.62)

= −2

∫ +∞

−∞

∫ +∞

0

â1

(
1√
πw0

e
− x

2+y2

2w2
0

)(
−
√

2

π

x

w2
0

(
e
− x

2+y2

2w2
0

))
dxdy (2.63)

âf =

√
2

π
â1 (2.64)
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Returning to our original signal expression

〈N̂L〉 − 〈N̂R〉 = 〈â†0âf + â†f â0〉 (2.65)

= 〈â†0

√
2

π
â1 +

√
2

π
â†1â0〉 (2.66)

= 〈α, θα√
2w0

| â†0

√
2

π
â1 +

√
2

π
â†1â0 |α,

θα√
2w0

〉 (2.67)

= α∗
√

2

π

θ√
2
w0α+ α∗

√
2

π

θ√
2
w0α (2.68)

=
2θ|α|2√
πw0

(2.69)

Signal =
2N√
πw0

∆x (2.70)

The noise is the square root of the variance for the photon number difference operator. That
is,

Noise =

√
Var(N̂−) (2.71)

=

√
〈N̂−〉 (2.72)

To first order, the noise for the displacement measurement is determined by the photon shot
noise of the undisplaced beam. This means no higher order modes have been excited and
we model the laser as a coherent state. Thus, the state we calculate the expectation values
with respect to is a coherent state in the zeroth mode (associated with â0) and vacuum in
all other modes.

|ψ〉 = |α〉 ⊗ |0〉 ⊗ . . . (2.73)

The result is just the variance of a coherent state. Because the coherent state has Poissonian
statistics, we know that the variance is equal to the mean (always true for a coherent state).
In short,

Noise =
√
N (2.74)

Thus, our SNR is

SNR =
2∆x√
πw0

√
N (2.75)

Note that this SNR scales as
√
N just as the homodyne detection for a normal interferometer.

There is actually a rather subtle connection between these two measurement techniques. In
fact, one can imagine a split detection measurement as a homodyne measurement of mode
u1 using u0 as a local oscillator. This is one way to understand the similar scaling of SNR.

2.3.3 Detector Response Method

We will now derive the exact same SNR using a new method that is more general. This will
then allow us to very easily compare the SD to the PSD. In this new method, our signal is
given as

Signal = 〈
∫ ∞
−∞

∫ ∞
−∞

Θ(x)ψ(−)ψ(+)dxdy〉 (2.76)
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where Θ(x) is our detector response function and our optical field is decomposed as ψ(+) =

u0â0 + u1â1 +
∑
i uiâi. Where all the modes with i > 1 are in vacuum, therefor 〈â†i âi〉 = 0.

So, we have

Signal = 〈
∫ ∞
−∞

∫ ∞
−∞

Θ(x)(u0u0â
†
0â0 + u0u1â

†
0â1 + u1u0â

†
1â0 + u1u1â

†
1â1)dxdy〉 (2.77)

Now we can use the fact that the response function, Θ(x), is a step function and break the
integral into two

Signal = 〈
∫ ∞
−∞

∫ ∞
−∞

Θ(u0u0â
†
0â0 + u0u1â

†
0â1 + u1u0â

†
1â0 + u1u1â

†
1â1)dxdy〉 (2.78)

Signal = 〈
∫ ∞
−∞

∫ 0

−∞
−(u0u0â

†
0â0 + u0u1â

†
0â1 + u1u0â

†
1â0 + u1u1â

†
1â1)dxdy〉 (2.79)

+ 〈
∫ ∞
−∞

∫ ∞
0

(u0u0â
†
0â0 + u0u1â

†
0â1 + u1u0â

†
1â0 + u1u1â

†
1â1)dxdy〉 (2.80)

Flipping the first integral and letting x→ −x we get

Signal = 〈
∫ ∞
−∞

∫ ∞
0

(−u0u0â
†
0â0 + u0u1â

†
0â1 + u1u0â

†
1â0 − u1u1â

†
1â1)dxdy〉 (2.81)

+ 〈
∫ ∞
−∞

∫ ∞
0

(u0u0â
†
0â0 + u0u1â

†
0â1 + u1u0â

†
1â0 + u1u1â

†
1â1)dxdy〉 (2.82)

Signal = 〈
∫ ∞
−∞

∫ ∞
0

2(u0u1â
†
0â1 + u1u0â

†
1â0)dxdy〉 (2.83)

The state we are acting on is |ψ〉 = |α〉0 ⊗ |
θ√
2w0

α〉
1
⊗ |0〉i>1. Evaluating the integrals and

then the expectation value we get

Signal = 2

√
1

2π
〈â†0â1 + â†1â0〉 (2.84)

= 2

√
1

2π
(α∗α

θ√
2w0

+ α∗α
θ√
2w0

) (2.85)

=
2|α|2θ√
πw0

(2.86)

Signal =
2N∆x√
πw0

(2.87)

As above, the noise for displacement measurements is set by the shot noise on an undisplaced
beam. So, agai, we just have the noise of a coherent state:

√
N . Thus, we have recovered

our SNR as before

SNRSD =
2∆x√
πw0

√
N (2.88)

2.4 Position Sensitive Detector

A PSD is a photodetector with leads on the ends of the photodiode. To calculate the
signal of the the position sensitive detector we simply return to Eq. (2.76) and set Θ to
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the appropriate response function. We follow a classical argument to derive a reasonable
response function.

We know that the photocurrent at a given point is proportional to the power
impinging on the detector at that point. We write this as i(x) ∝ P (x). From the figure we
see that

i(x) = iL + iR (2.89)

Moreover, the voltage of the left and right side are the same, so we know

iLRL = iRRR (2.90)

We next impose a coordinate system such that our detector is centered on zero and has
length 2L. We take the total resistance of the detector material to be R. This fixes the
form of our resistances as

RL = R(
x

2L
+

1

2
) (2.91)

RR = R(
1

2
− x

2L
) (2.92)

From our established relations, we need to determine the photocurrents produced, iL and
iR. Note that these would technically be photocurrent per unit length (or area when beam
deflections are not restricted to 1D). Mathematically, we have two equations (Eq. (2.89)
and Eq. (2.90)) and two unknowns(iL and iR), so we can solve the system. The result is

iL = i(x)

(
RR

RR +RL

)
(2.93)

iR = i(x)

(
RL

RR +RL

)
(2.94)

(2.95)

The signal is proportional to the difference between the right and left photocurrents. Using
Eq. (2.92) and Eq. (2.91) we find

Signal ∝ iR − iL

∝ i(x)

(
RL

RR +RL

)
− i(x)

(
RR

RR +RL

)
Signal ∝ i(x)

x

L

(2.96)

The takeaway is that our signal should be the photocurrent produced at some x-coordinate
multiplied by x/L. So, instead of a step function response like the split detector, the PSD
has a linear response function, Θ = x/L where 2L is the length of your PSD along the axis
of beam displacement. We can easily construct a quantum mechanical version of the signal
given in Eq. (2.96) as

Signal = 〈
∫ ∞
−∞

∫ ∞
−∞

x

L
ψ(−)ψ(+)dxdy〉 (2.97)

where our optical field is decomposed as ψ(+) = u0â0 +u1â1 +
∑
i uiâi. Where all the modes

with i > 1 are in vacuum therefor 〈â†i âi〉 = 0. So, we have

Signal = 〈
∫ ∞
−∞

∫ ∞
−∞

x

L
(u0u0â0â0 + u0u1â0â1 + u1u0â1â0 + u1u1â1â1)dxdy〉 (2.98)
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Figure 2.6: Detector mode multiplied by the transverse optical mode yields the detected mode.

Next, we use the fact that any odd function integrated over the whole domain will be zero.
Thus, we are left with

Signal = 〈
∫ ∞
−∞

∫ ∞
−∞

x

L
(u0u1â0â1 + u1u0â1â0)dxdy〉 (2.99)

Then, using the definition of the modes given above, we have

Signal =

√
2w0

2L
〈â†0â1 + â†1â0〉 (2.100)

=

√
2w0

2L
(α∗α

θ√
2w0

+ αα∗
θ√
2w0

) (2.101)

=
|α|2θ
L

(2.102)

=
N∆x

L
(2.103)

again using the fact that |α|2 = N . Now, to calculate the noise, we return to Eq. (2.97). By
calculating the variance of this operator for an undisplaced coherent state and then taking
the square root of that expression we will arrive at our noise level.

Noise =

√
〈(
√

2w0

2L
(â†0â1 + â†1â0))2〉 (2.104)

=
w0

√
N√

2L
(2.105)

(2.106)

Thus, the SNR is given as

SNRPSD =

√
2
√
N∆x

w0
(2.107)

Comparing this expression to Eq. (2.88) we will arrive at our main result.

SNRPSD

SNRSD
=

√
2
√
N∆x
w0

2
√
N∆x√
πw0

=

√
π

2
(2.108)
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Experimentally, the SNR will be measured in the deciBel scale. Thus, we should be able to
observe an improvement of 10 log10

√
π
2 ≈ 1.96dB in the SNR of the PSD as compared to

the SD. Our final result is interesting because it tells us that the position sensitive detector
is slightly better than a split detector at detecting small beam displacements and should
thus be the preferential detector for experimentalists attempting to work at, or below, the
SQL. A flaw in our analysis, however, was in treating the currents within the detectors
as classical values. Given more time on the project, we would have done a fully quantum
analysis. Thus, the reader is encouraged to accept the above formalism for its generally
applicability to various detector set-ups while noting that the electric current should be
quantized and treated quantum mechanically.

2.5 Conclusion

In this project, we have added some theoretical detail to the derivations sketched by Barnett
et. al. [27] and extended their analysis to the case of position sensitive detectors. We
introduced a very general method of deriving the displacement of a coherent state by any
passive optical element. This formalism will be useful to those attempting to derive the
theoretical limits of their beam displacement measurements – a task of great interest to the
quantum measurement community. Finally we have shown theoretically that the PSD should
outperform the SD by roughly 2 dB, a result expected when one examines the Quantum
Cramer-Rao Bound for the measurement. [28,29,31–33] This concludes the technical aspect
of this thesis. We now turn to a brief overview of the academic activities I took part in
outside of University of Birmingham.
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Chapter 3

Conferences

3.1 Quantum Information and Measurement V: Quan-
tum Technologies

In order to network and to learn more about the cutting edge of quantum information and
measurement, I decided to attend the Optical Society if America’s Quantum Information
and Measurement conference in Rome, Italy. Of the many fantastic talks at the conference,
a few stood out as truly exceptional in either quality or relevance to this thesis, or both.
A plenary talk entitled “Gravitational-wave Detectors” was given by Nergis Mavalvala of
MIT. It was a fantastic overview of the quantum optics and measurement techniques needed
to detect gravitational waves. It was obviously very applicable to my research; however a
thesis talk entitled “Frequency-dependent squeezed states for gravitational-wave detection
through EPR entanglement” by Jan Gniesmer was even more applicable. In fact, his PhD
was an experimental demonstration of the theory that forms the bulk of this thesis.

In addition to these great gravitational-wave-related talks, I also learned a great
deal about quantum computing, a field that has interested me for some time. Specifically,
there were several talks regarding optical quantum computing using multi-partite entangle-
ment that really excited me. Because I love quantum optics and quantum computing, I was
excited to learn that many groups around the world are attempting to develop large-scale
optical quantum computers. This seems like it could be an ideal field for me to try and get
some experience in throughout my PhD as it blends all of my current interests.

Overall, the conference was beneficial to my career development because I devel-
oped a picture of what fields are actively being pursued by the best researchers in the world.
This is especially important to me because I am returning to the United States for my PhD.
In the US, thesis projects are not decided until roughly the second year of the PhD. As such,
this conference was useful because it gave me ideas for potential thesis projects, which in
turn will help me with the all-important task of selecting a thesis advisor. In short, it was
a wonderful opportunity to learn physics and to help guide my graduate career. Oh, and
Rome wasn’t so bad either.
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Figure 3.1: The 2018-2019 MRes Translational Quantum Technology cohort outside the physics
building at La Sapienza University of Rome.

3.2 Les Houches Predoctoral School

I was very fortunately selected for a week-long school on Light Matter Interaction in Dilute
Media and Individual Quantum Systems organized by Quentin Glorieux (Laboratoire Kastler
Brossel – Sorbonne Université), Antoine Browaeys (Institut d’Optique – Saclay University),
and Julien Laurat (Laboratoire Kastler Brossel – Sorbonne Université). This turned out to
be one of the most beneficial and enjoyable experiences of my time in the UK.

Each day, we had five hours of lectures and a four hour break to hike in the
mountains nearby. After dinner on Monday and Wednesday we had the poster sessions.
Throughout the week, I made several friends and learned a great deal about how European
physics differs from the United States. Equally importantly, there was a fantastic series
of lectures on “Multimode Quantum Optics” given by Nicolas Treps. His lectures were
wonderfully rigorous and mathematical and will surely help with both of my projects in
this thesis. Moreover, it inspired me to do quantum optics with the same rigor that seems
completely standard in France. After speaking with Nicolas and Quentin, it seems I may
be able to go work with Nicolas on his quantum information and measurement efforts. I
hope to do so via the National Science Foundation’s GRaduate Opportunities Worldwide
(GROW) program.

That week in the alps made me feel like a real scientist, a feeling that not all
graduate opportunities instill within their participants. It left me feeling motivated and
refreshed as well as excited for the future. I hope that it will lead to real collaboration and
friendship as it seems it will. Time will tell. Regardless, I can’t think of a better way to
spend a week.

47



Figure 3.2: The main building at L’École de Physique des Houches. The school was founded in
1951 by a young French scientist named Cécile DeWitt-Morette.

Figure 3.3: The stunning view of the mountains on my walk to breakfast.

Figure 3.4: A wonderful lecture by Robert Löw on four-wave mixing in Rubidium-87 vapor.
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Appendix A

Quantum Optics Derivations

A.1 Derivation of NLA Input-Output Relation

The interaction Hamiltonian of nondegenerate parametric amplifier is given as

Ĥint = i~χ(2)αp
(
a†b† − ab

)
(A.1)

where χ(2) is the nonlinear susceptibility of the medium, αp is the pump amplitude, and a
and b are the signal and idler modes, respectively. We now solve the Heisenberg equations
of motion for the signal and idler.

ȧ =
1

i~
[a,Hint]

= χ(2)αp

(
a
(
a†b† − ab

)
−
(
a†b† − ab

)
a
)

= κ
(
aa†b† − aab− a†b†a+ aba

)
= κ

(
(aa† − a†a)b†

)
= κ[a, a†]b†

ȧ = κb†

Following the exact same steps gives ḃ = κa†. The second derivatives are then

ä = κḃ† (A.2)

ä = κ2a (A.3)

and
b̈ = κ2b (A.4)

Let’s solve eq. 1.3 first. Assume a solution a(t) = eλt. This leads to the characteristic
equation λ2 − κ2 = 0 or λ = ±κ. So our solution is simply

a(t) = A′e−κt +B′eκt (A.5)
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Now, typically we would apply boundary conditions and be done; however, it is common in
the field of quantum optics to instead parameterize the above function as

a(t) = A sinhκt+B coshκt (A.6)

which we can get by just letting A′ = B−A
2 and B′ = A+B

2 . This is allowed because these
constants are still just constants and will therefore be solutions to the differential equation.
We need the derivative of (1.6) as well.

ȧ(t) = Aκ coshκt−Bκ sinhκt (A.7)

and
ȧ(t) = κb† (A.8)

Now we apply the boundary conditions a(0) = B and ȧ(0) = Aκ = κb†(0) =⇒ A = b†(0).
So we have

a(t) = a(0) coshκt+ b†(0) sinhκt (A.9)

We can follow the exact same procedure to find

b(t) = b(0) coshκt+ a†(0) sinhκt (A.10)

Following the two photon formalism of Carlton Caves, we define the amplitude and phase
quadratures as

a1(t) =
a(t) + a†(t)√

2
(A.11)

a2(t) =
a(t)− a†(t)√

2i
(A.12)

Plugging (1.9) and (1.10) into these definitions, we get

a1(t) =
1√
2

(
a(0) coshκt+ b†(0) sinhκt+ a†(0) coshκt+ b(0) sinhκt

)
(A.13)

a1(t) = a1(0) coshκt+ b1(0) sinh(κt) (A.14)

(A.15)

b1(t) = b1(0) coshκt+ a1(0) sinh(κt) (A.16)

Now, let’s look at the so-called amplitude difference quadrature X−(t) = a1(t)− b1(t)

X−(t) = a1(t)− b1(t) (A.17)

= a1(0) coshκt+ b1(0) sinh(κt)− (b1(0) coshκt+ a1(0) sinh(κt)) (A.18)

= e−κta1(0)− e−κtb1(0) (A.19)

= e−κtX−(0) (A.20)

It follows that the uncertainty associated with this state is less after the amplifier:

〈∆2X−(t)〉 = 〈X−(t)2〉 − 〈X−(t)〉2 (A.21)

= 〈(e−κtX−(0))2〉 − 〈e−κtX−(0)〉2 (A.22)

= e−2κt(〈X−(0)2〉 − 〈X−(0)〉2) (A.23)

∆X−(t) = e−κt∆X−(0) (A.24)

We have the exact same relationship for the phase sum quadrature:

∆P+(t) = e−κt∆P+(0) (A.25)
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A.2 Spectral Density Calculation Example

Here we will calculate one element from the spectral density matrix given in section 1.2.5.
From our definition of spectral density (eq. 1.13) we have

Sâ1â1δ(Ω− Ω′) =
1

2π
〈ξ| â1â

†
1 + â†1â1 |ξ〉

=
1

2π
〈0| Ŝ†(â1â

†
1 + â†1â1)Ŝ |0〉

=
1

2π
〈0| Ŝ†â1ŜŜ

†â†1Ŝ + Ŝ†â†1ŜŜ
†â1Ŝ |0〉

=
1

2π
〈0| Ŝ†(

â+ + â†−√
2

)ŜŜ†(
â†+ + â−
√

2
)Ŝ + Ŝ†(

â†+ + â−
√

2
)ŜŜ†(

â+ + â†−√
2

)Ŝ |0〉

=
1

4π
〈0| Ŝ†(â+ + â†−)ŜŜ†(â†+ + â−)Ŝ + Ŝ†(â†+ + â−)ŜŜ†(â+ + â†−)Ŝ |0〉

Expanding this out will give us terms like Ŝ†â+Ŝ which we know how to transform using
equations 1.11 and 1.12. Applying these and using the fact that â± |0〉 = 0 we get

Sâ1â1δ(Ω− Ω′) =
1

4π
〈0| â+â

†
+ cosh2 r + b̂+b̂

†
+ sinh2 r |0〉

=
1

4π
(2πδ(Ω− Ω′)(cosh2 r + sinh2 r))

Sâ1â1 =
1

2
(cosh2 r + sinh2 r)

=
1

2
cosh 2r
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